
 International Journal of Scientific & Engineering Research, Volume 4, Issue 10, October-2013 1337
ISSN 2229-5518

IJSER © 2013
http://www.ijser.org

Variants in Synchronized Pure Pattern
Languages

Sindhu J Kumaar, P. J. Abisha,

Abstract: A language generative device, known as Synchronized Pure Pattern grammar, is considered. This serves to link the
notions of Pure grammar and Pattern grammar that have been introduced and investigated in the literature with different
motivations. Three different variants of synchronized Pure Pattern grammars which was introduced earlier is considered and
resultant families of languages are compared for their generative power with certain well-known families of languages
Index Terms:

1. Introduction

Formal language theory, which is one of the
foundation areas of theoretical computer science, is
replete with an abundance of grammars that have
been introduced and investigated with different
motivations. The pure grammars introduced in]7]
is more in line with early work of Thue on words[8]
in the sense of not dividing the alphabet into
terminals and non-terminals unlike the well-known
[12] Chomskian grammars. Also in contrast to the
well-investigated L systems which involve
rewriting in parallel, the rewriting process in a pure
grammar is sequential as in the Chomskian
grammars. A number of investigations on pure
grammars in terms of theoretical properties and
applications have been done in the literature.

On the other hand a different kind of
language generative model, called pattern
grammar, was introduced in [5]. This grammar
involves an operation of replacing, by a special set
of strings in parallel, all variables in a pattern
string. The replacement is done in a uniform way in
the sense of replacing all occurrences of the same
variable in a pattern by the same string. This kind
of grammar is motivated by the study of Angluin
[1] on patterns that describe a set of strings.

Pattern grammars have been subsequently

investigated from different points of view.

In this paper we consider a new generative

device known as a synchronized pure pattern
grammar, which was originally introduced in [14].
This provides a natural link between pure
grammars [7] and pattern grammars [5] which had
motivations from different directions. The pure
pattern grammar has only one kind of symbol,
namely terminal symbol or constant, as in pure

grammars. The generation of words involves a
process that is analogous to that in a pattern
grammar. In other words, the synchronized pure
pattern grammar has patterns which are the strings
of constants of terminal symbols. The constants are
replaced initially by axioms over terminal symbols.
The process is continued by replacing at any step
the symbols in a pattern with the current set of
words derived, there by yielding the associated
language. We introduce three modes of working of
a synchronized pure pattern grammar

2 Preliminaries
We recall some necessary definitions. For
unexplained notions and notations, we refer to
[13]. An alphabet Σ is a finite set of symbols. A
word over Σ is a finite sequence of symbols ofΣ .
The set of all words over Σ is denoted byΣ *
which includes the empty word λ. We write
Σ + = Σ * - {λ}

 Definition 1[9] A pure grammar is a triple G = (Σ,
P, S) where Σ is a finite alphabet, S is a finite set of
words over Σ and P is a finite set of ordered pairs
(x, y) of words over Σ. The elements of P are
referred to as productions, usually written as x →
y. If x∈ Σ , in every production x → y of P, then G
is called a pure context-free grammar (PCF)

In a pure grammar, a word w over Σ yields
directly a word w´ over Σ according to G if there
are words w1, w2 ∈ Σ * and a production x → y in
P such that w = w1xw2 and w´ = w1yw2. We then
write w G⇒ w´ or briefly w⇒ w´ (if G is
understood). The reflexive, transitive closure of
⇒ is denoted by ⇒ *. The language L(G)
generated by G, called pure language, is defined as

IJSER

http://www.ijser.org/

 International Journal of Scientific & Engineering Research, Volume 4, Issue 10, October-2013 1338
ISSN 2229-5518

IJSER © 2013
http://www.ijser.org

L(G) = {w / s ⇒ * w, for some s in S}. The language
generated by a PCF grammar is called PCF
language.

Example 1

The PCF grammar G = ({a,b},{a → ab}, {a})
generates the PCF language L(G) consisting of all
words of the form abn, n = 0, 1, 2, …

Though in both the Chomskian and pure
grammars, the rewriting process is sequential, it is
known [13] that these two families of languages are
incomparable.

Definition 2 [5, 11] A pattern grammar is a 4 -
tuple G = (Σ, X, A, P) where Σ is an alphabet whose
elements are called constants, X is an alphabet
whose elements are called variables, A ⊆ Σ* is a
finite set of words, called axioms, P ⊆ (Σ ∪X)* is a
finite set of words called patterns where each word
contains at least one variable.
The rewriting in G is defined as follows: Initially,
words are obtained by replacing in parallel and
uniformly all the variables in a pattern in P by
axioms of A with different occurrences of the same
variable being replaced by the same word. The
process is continued in a similar way by replacing
variables by words from the current set of strings
obtained. The language generated by G is L (G) = A
∪ P(A) ∪ P(P(A)) ∪…, where P(X) denotes the set
of strings obtained from patterns in P by using
strings of the set X in the manner described above.

Example 2 G = ({a, b} , {δ} , {ab} , {aδb}) is a pattern
grammar generating the language L(G) consisting
of all words of the form anbn, n = 1, 2, …. In fact A =
{ab} and initially the axiom word ab replaces δ in
the pattern aδb to yield aabb. The process is
repeated. Thus P(A) = {aabb}, P(P(A)) = {aaabbb }
and so on.

It is known [5] that the pattern grammars generate
a family of languages incomparable with
Chomskian languages [213 and Lindenmayer
languages.

3 Variants of Synchronized Pure
Pattern Grammars

In this section, we consider the notion of a
synchronizing pure pattern grammar (SPPG) and
non-synchronizing pure pattern grammar
(NSPPG). Synchronized Pure pattern grammars
(SPPG) were originally introduced in [14] linking
the studies of pure grammars [7] and pattern
grammars [5]. Here we recall the definition
synchronized pure pattern grammar (SPPG). Also
we define non-synchronizing grammars (NSPPG).

Definition 3 A synchronized pure pattern
grammar (SPPG) is a triple G = (Σ, A, P) where Σ is
an alphabet, A ⊆ Σ* is a finite nonempty set of
elements of Σ*, called axioms and P is a finite
nonempty subset of Σ+, called the set of patterns.
For a set P and a set of words X ⊆ Σ*, let P(X) be
the set of strings obtained by replacing all letters of
every pattern by strings in X, uniformly and in
parallel. Different occurrences of the same letter in
a pattern are replaced by the same string.

Initially the symbols in a pattern are replaced by
the axioms and subsequently the replacement
process is continued with the set of words obtained
at the current step. The language (SPPL) generated
by G, denoted by L (G), is the smallest language L
⊆ Σ* for which we have P ⊆ L, A ⊆ L and P (L) ⊆ L.
In fact L(G) = P ∪ A ∪ P(A) ∪ P(P(A)) ∪ …. We
denote by SPPL itself the family of languages
generated by SPPGs.

Non Synchronized Grammars
Definition 4 A non-synchronized pure pattern
grammar (NSPPG) is a triple G = (Σ, A, P) where Σ
is an alphabet A ⊆ Σ* is a finite nonempty set of
elements of Σ* called axioms and P is a finite
nonempty subset of Σ+ called the set of patterns.
The difference in the working of a NSPPG is that at
the rth step, each letter of the pattern is replaced by

words from ()
1

0

−

=

r

i
i AP unlike in SPPG where at

the rth step each letter of the pattern is replaced by
words Pr – 1(A).

In other words we start with the axiom set A and
use the words of the axiom set in the replacement
of symbols in a pattern in P to obtain P(A). We

IJSER

http://www.ijser.org/

 International Journal of Scientific & Engineering Research, Volume 4, Issue 10, October-2013 1339
ISSN 2229-5518

IJSER © 2013
http://www.ijser.org

then use words in A ∪ P(A) to obtain P(A ∪ P(A))
and the process is continued. Thus the language of
the NSPPG G is L(G) = P ∪ A ∪ P(A) ∪ P(A ∪
P(A)) ∪ P(A ∪ P(A) ∪ P(A ∪ P(A))) ∪ …. We
denote the family languages generated by NSPPG
by NSPPL.

Remark 1: Note that in a SPPG and a NSPPG, the
patterns themselves are in the language of the
grammar. Also note that there is no difference in
the components of a SPPG and a NSPPG. The
difference lies only in the working.

Example 3 We illustrate with some SPPGs and
NSPPGs with the corresponding languages
generated.
i) G1 = ({a}, {a}, {aa}). Here L (G1) =

{ }...,2,1,0/2 =na
n

. In fact initially the
axiom a replaces both a’s in the pattern aa to
yield a2 which is then used to replace again
both a’s in the pattern aa giving a4 and the
process continues. This grammar in non-
synchronizing mode generates the same
language.

ii) G2 = ({a, b}, {λ, a, b}, {ab}). L(G2) = Σ*. Any of
the axioms λ, a, b can initially replace
independently a as well as b in the pattern ab
yielding λ, a, b, aa, ab, ba, bb. The resulting
words can be used in a similar manner in the
pattern ab and the process can be continued
to yield the language consisting of all strings
over a, b including the empty string.

iii) Consider G3 = ({a, b}, {a}, {abb}). In

synchronizing mode the language generated

is L(G3) = { }...,2,1/3 =na
n

 ∪{abb}. In non-
synchronizing mode in the first step, using a
we obtain a3 and in the next step we obtain a3,
a5, a7, a9. Note that if we work in the
synchronizing mode we can obtain only a9. In
the subsequent step in the non-synchronizing
mode we obtain a11, a13, a15, a17, a19, a21, a23, a25,
a27. Thus the language generated in non-
synchronizing mode is L(G3) = {abb} ∪ {a2n – 1/
n = 1, 2, 3, …}.

Here we consider two more variants in the above
formalism of defining SPPGs. In the first case, we

do not include the set of patterns in the language.
In the second, we allow rewriting of patterns using
patterns, not only the axioms. The following
discussion shows what happens in these cases and
compare them with definition 3.

Case (i): A Synchronizing pure pattern grammar
SPPG1 is a triple G = (Σ , A, P) where Σ is an
alphabet, A ⊆ Σ * is a finite nonempty set of
elements of Σ *, called axioms and P is finite
nonempty subset of Σ +, called the set of patterns.
For a set of words X ⊆ Σ *, let P(X) be the set of
strings obtained by replacing uniformly and in
parallel, all the letters in every pattern of P, by
strings in X. Different occurrences of the same
letter in a pattern are replaced by the same string.
Initially the symbols in a pattern are replaced by
the axioms and subsequently the replacement
process is continued with the words obtained at
the current step. The language SPPL, generated by
G, denoted by L(G), is the smallest language L ⊆
Σ * for which we have A ⊆ L and P(L) ⊆ L.

In fact L(G) = A ∪ P(A) ∪ P(P(A)) ∪ …

If SPPG1 G is defined as above then the language
SPPL1 generated in synchronizing mode becomes
subclass of a pattern language (PL). Reason is that
as the pattern is not included in the language
defined by a SPPG1 G, any language generated in
synchronizing mode can be generated by a pattern
grammar, but the converse is not true. This is seen
from the following examples.

Example 4:

(i) Consider a synchronized pure pattern
Grammar G1 = ({a,b}, {a, b}, {ab}) then
P(A) = {a2, b2, ab, ba}; P(P(A)) = {a4,
a2b2, a3b, a2ba, b2a2, b4, b2ab, b3a, aba2,
ab3, abab, ab2a, ba3, bab2, ba2b, baba}
…
Same language can be generated by a
Pattern Grammar G = ({a,b}, {a, b}, {

21 δδ }) then
P(A) = {a2, b2, ab, ba}; P(P(A)) = {a4,
a2b2, a3b, a2ba, b2a2, b4, b2ab, b3a, aba2,
ab3, abab, ab2a, ba3, bab2, ba2b, baba}
…

IJSER

http://www.ijser.org/

 International Journal of Scientific & Engineering Research, Volume 4, Issue 10, October-2013 1340
ISSN 2229-5518

IJSER © 2013
http://www.ijser.org

If the pattern in SPPG1 is {aa} then
correspondingly in PG a pattern of the
form {δδ } can be used. So if SPPL1 is
defined as L(G) = A ∪ P(A) ∪
P(P(A)) ∪ … then SPPL1 ⊆ PL as
such construction can be done for any
PPG.

(ii) Consider the pattern language L(G2) =
{anbn/ n = 1, 2, …} generated by pattern
grammar G2 = ({a,b}, {λ }, {aδ b}). By
definition of a SPPG1 we know the
L(G2) cannot be generated by any
SPPG1.

 PL
 SPPL

Case (ii): If SPPL2 is defined as L(G) = P ∪A ∪
P(A) ∪ P(P(A)) ∪ … .. P(P) ∪ P(P(P)) ∪… then
in this case the pattern substitutions on pattern are
included in the language. If the language SPPL2
generated by SPPG2 G is defined as above then
SPPL2 becomes incomparable with PL but not
disjoint. This is seen from the following example.

Example 5:

(i) Consider a PPG G = ({a,b}, {a, b}, {ab})
then P(A) = {a2, b2, ab, ba}; P(P) =
{abab}; P(P(A)) = {a4, a2b2, a3b, a2ba,
b2a2, b4, b2ab, b3a, aba2, ab3, abab, ab2a,
ba3, bab2, ba2b, baba}; P(P(P)) =
{abababab} …

(ii) But in Pattern Grammar the string
{ab} is included in the axiom set, let G
= ({a,b}, {a, b, ab}, { 21 δδ }) then
P(A) = {a2, b2, ab, ba, abab, a2b, bab,
aba, ab2}; P(P(A)) = {a4, a2b2, a3b, a2ba,

b2a2, b4, b2ab, b3a, aba2, ab3, abab, ab2a,
ba3, bab2, ba2b, baba, abababab,
ababa2, abab3, ababab, abab2a, ababa2b,
..} …

Here the strings abab, abababab which are in SPPL
generated by pattern substitutions on P are in PL,
but strings like a2b, bab, aba are not in SPPL. Thus
if SPPL is defined as L(G) = P ∪A ∪ P(A) ∪
P(P) ∪ P(P(A)) ∪ P(P(P)) … certain strings
generated by PG cannot be generated by SPPG
hence SPPL becomes incomparable but not disjoint
with PL. Any way, it is unusual to substitute
patterns into patterns, as only axioms should be
the start point of rewriting process.

4. Conclusion

We have considered here three modes of
derivation of synchronized pure pattern grammar.
We have shown three variants in SPPL of which
one is a subclass of pattern language PL and the
other is incomparable and disjoint with pattern
language PL, but the model which we have
considered is novel in the sense it is not a subclass
of pattern language and does not involve pattern
substitutions on pattern set P.

References

[1] Angluin, D. (1980). Finding patterns common to a

set of strings, Journal of Computer and System
Sciences. 21, 46 – 62.

[2] Berstel, J. (1995). Axel Thue's Papers on
Repetitions in Words: a Translation, Publications
du LaCIM, Dpartement de mathmatiques et
d'informatique, 20.Universit du Qubec Montral.

[3] Castiglione, G., Restivo, A. and Salemi, S. (2004).
Patterns in words and languages, Discrete Appl.
Math, 144, 237 - 246.

[4] Crepinsek, M., Kosar, T., Mernik, M., Cervelie, J.,
Forax, R., Rousse, G. (2010). On Automata and
Language Based Grammars Metrics, Computer
Science and Information Systems, 7(2), 309 – 329.

[5] Dassow, J, Paun, G. and Salomaa, A. (1993).
Grammars based on patterns, International Journal
of Foundations of Computer Science 4, 1-14.

[6] Gabrielian, A. (1981). Pure grammars and pure
languages, Int. J. Comput. Math. 9, 3 - 16.

 [7] Maurer, H. A., Salomaa, A. and Wood, D. (1980).
Pure Grammars, Journal of information and Control,
44, 47 – 72.

[8] Mitrana, V. (1996). Iterated pattern languages, J.
Autom. Lang. Comb., 1, 305 - 311.

 PL PL

 SPPL1

IJSER

http://www.ijser.org/

 International Journal of Scientific & Engineering Research, Volume 4, Issue 10, October-2013 1341
ISSN 2229-5518

IJSER © 2013
http://www.ijser.org

[9] Mitrana, V. (1999). Patterns and languages: An
Overview, Grammars, 2, 149 – 173.

[10] Mitrana, V., Paun, Gh., Rozenberg, G. and Saloma,
A. (1996). Pattern systems, Journal of Theoretical
Computer Science, 154, 183 - 201.

 [11] Paun, Gh., Rozenberg, G. and A. Salomaa, (1996).
Pattern Grammars, Journal of Automata, Languages
and Combinatorics, 1, 219 – 235.

{12} Rozenberg G. and Saloma, A. (1997). Hand book
on Formal Languages, Volume 1 – 3, Springer
Verlag, The Mathematical Theory of L – Systems,
Academic Press, New York.

 [13] Salomaa, A. (1973). Formal Languages, Academic
Press, New York.

[14] Sindhu J Kumaar, Abisha, P. J., Thomas, D. G.,
Nor Haniza Sarmin, Subramaniam, K. G. (2013).
Languages defined by Pure Pattern Grammars,
accepted for publication in International Journal of
Applied Mathematics and Computational
Inteligence.

[15] Subramanian, K. G., Ali, R. M., Geethalakshmi, M.,
Nagar, A. K. (2009). Pure 2D picture grammars
and languages, Discret Appl. Math., 157, 3401 –
3411.

IJSER

http://www.ijser.org/

