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Abstract: A language generative device, known as Synchronized Pure Pattern grammar, is considered. This serves to link the 
notions of Pure grammar and Pattern grammar that have been introduced and investigated in the literature with different 
motivations. Three  different variants of synchronized  Pure Pattern grammars which was introduced earlier is considered and 
resultant families of languages are compared for their generative power with certain well-known families of languages 
Index Terms: 
 
1. Introduction  
 
Formal language theory, which is one of the 
foundation areas of theoretical computer science, is 
replete with an abundance of grammars that have 
been introduced and investigated with different 
motivations. The pure grammars introduced in ]7] 
is more in line with early work of Thue on words[8] 
in the sense of not dividing the alphabet into 
terminals and non-terminals unlike the well-known 
[12] Chomskian grammars.  Also in contrast to the 
well-investigated L systems which involve 
rewriting in parallel, the rewriting process in a pure 
grammar is sequential as in the Chomskian 
grammars. A number of investigations on pure 
grammars in terms of theoretical properties and 
applications have been done in the literature.  
 

On the other hand a different kind of 
language generative model, called pattern 
grammar, was introduced in [5]. This grammar 
involves an operation of replacing, by a special set 
of strings in parallel, all variables in a pattern 
string. The replacement is done in a uniform way in 
the sense of replacing all occurrences of the same 
variable in a pattern by the same string. This kind 
of grammar is motivated by the study of Angluin 
[1] on patterns that describe a set of strings.  

 
Pattern grammars have been subsequently 

investigated from different points of view. 
  
In this paper we consider a new generative 

device known as a synchronized pure pattern 
grammar, which was originally introduced in [14]. 
This provides a natural link between pure 
grammars [7] and pattern grammars [5] which had 
motivations from different directions. The pure 
pattern grammar has only one kind of symbol, 
namely terminal symbol or constant, as in pure 

grammars. The generation of words involves a 
process that is analogous to that in a pattern 
grammar. In other words, the synchronized pure 
pattern grammar has patterns which are the strings 
of constants of terminal symbols. The constants are 
replaced initially by axioms over terminal symbols. 
The process is continued by replacing at any step 
the symbols in a pattern with the current set of 
words derived, there by yielding the associated 
language.  We introduce three modes of working of 
a synchronized pure pattern grammar  

    
2 Preliminaries 
We recall some necessary definitions. For 
unexplained notions and notations, we refer to 
[13]. An alphabet Σ  is a finite set of symbols. A 
word over Σ  is a finite sequence of symbols ofΣ .  
The set of all words over Σ  is denoted byΣ * 
which includes the empty word λ. We write          
Σ + = Σ * - {λ} 
 
 Definition 1[9] A pure grammar is a triple G = (Σ, 
P,  S) where Σ is a finite alphabet, S is a finite set of 
words over Σ and P is a finite set of  ordered pairs 
(x, y) of words over Σ. The elements of P are 
referred to as productions, usually written as x → 
y. If x∈ Σ , in every production x → y of P, then G 
is called a pure context-free grammar (PCF) 
 
In a pure grammar, a word w over Σ  yields 
directly a word w´ over Σ  according to G if there 
are words w1, w2 ∈ Σ * and a production x → y in 
P such that w = w1xw2 and w´ = w1yw2. We then 
write w G⇒  w´ or briefly w⇒  w´ (if G is 
understood). The reflexive, transitive closure of 
⇒ is denoted by ⇒ *. The language L(G) 
generated by G, called pure language, is defined as 
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L(G) = {w / s ⇒ * w, for some s in S}. The language 
generated by a PCF grammar is called PCF 
language.     
  
Example 1 
  
The PCF grammar G = ({a,b},{a → ab}, {a}) 
generates the PCF language L(G) consisting of all 
words of the form abn, n = 0, 1, 2, …   
 

Though in both the Chomskian and pure 
grammars, the rewriting process is sequential, it is 
known [13] that these two families of languages are 
incomparable.  
 
Definition 2 [5, 11] A pattern grammar is a 4 -
tuple G = (Σ, X, A, P) where Σ is an alphabet whose 
elements are called constants, X is an alphabet 
whose elements are called variables, A ⊆ Σ* is a 
finite set of words, called axioms, P ⊆ (Σ ∪X)* is a 
finite set of words called patterns where each word 
contains at least one variable.  
The rewriting in G is defined as follows: Initially, 
words are obtained by replacing in parallel and 
uniformly all the variables in a pattern in P by 
axioms of A with different occurrences of the same 
variable being replaced by the same word. The 
process is continued in a similar way by replacing 
variables by words from the current set of strings 
obtained. The language generated by G is L (G) = A 
∪ P(A) ∪ P(P(A)) ∪…, where P(X) denotes the set 
of strings obtained from patterns in P by using 
strings of the set X in the manner described above.  
 

Example 2 G = ({a, b} , {δ} , {ab} , {aδb}) is a pattern 
grammar generating the language L(G) consisting 
of all words of the form anbn, n = 1, 2, …. In fact A = 
{ab} and initially the axiom word ab replaces  δ in 
the pattern aδb to yield aabb. The process is 
repeated. Thus P(A) = {aabb}, P(P(A) ) = {aaabbb } 
and so on.  
 
It is known [5] that the pattern grammars generate 
a family of languages incomparable with 
Chomskian languages [213 and Lindenmayer 
languages. 
 

 

 

3 Variants of Synchronized Pure 
Pattern Grammars  
 
In this section, we consider the notion of a 
synchronizing pure pattern grammar (SPPG) and 
non-synchronizing pure pattern grammar 
(NSPPG). Synchronized Pure pattern grammars 
(SPPG) were originally introduced in [14] linking 
the studies of pure grammars [7] and pattern 
grammars [5]. Here we recall the definition 
synchronized pure pattern grammar (SPPG).  Also 
we define non-synchronizing grammars (NSPPG). 
 

Definition 3 A synchronized pure pattern 
grammar (SPPG) is a triple G = (Σ, A, P) where Σ is 
an alphabet, A ⊆ Σ* is a finite nonempty set of 
elements of Σ*, called axioms and P is a finite 
nonempty subset of Σ+, called the set of patterns. 
For a set P and a set of words X ⊆ Σ*, let P(X) be 
the set of strings obtained by replacing all letters of 
every pattern by strings in X, uniformly and in 
parallel. Different occurrences of the same letter in 
a pattern are replaced by the same string.  
 
Initially the symbols in a pattern are replaced by 
the axioms and subsequently the replacement 
process is continued with the set of words obtained 
at the current step. The language (SPPL) generated 
by G, denoted by L (G), is the smallest language L 
⊆ Σ* for which we have P ⊆ L, A ⊆ L and P (L) ⊆ L. 
In fact L(G) = P ∪ A ∪  P(A) ∪ P(P(A)) ∪ …. We 
denote by SPPL itself the family of languages 
generated by SPPGs. 
 
Non Synchronized Grammars 
Definition 4 A non-synchronized pure pattern 
grammar (NSPPG) is a triple G = (Σ, A, P) where Σ 
is an alphabet A ⊆ Σ* is a finite nonempty set of 
elements of Σ* called axioms and P is a finite 
nonempty subset of Σ+ called the set of patterns.  
The difference in the working of a NSPPG is that at 
the rth step, each letter of the pattern is replaced by 

words from ( )
1

0

−

=

r

i
i AP  unlike in SPPG where at 

the rth step each letter of the pattern is replaced by 
words Pr – 1(A).   
 
In other words we start with the axiom set A and 
use the words of the axiom set in the replacement 
of symbols in a pattern in P to obtain P(A). We 
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then use words in A ∪ P(A) to obtain P(A ∪ P(A)) 
and the process is continued. Thus the language of 
the NSPPG G is         L(G) = P ∪ A ∪ P(A) ∪ P(A ∪ 
P(A)) ∪ P(A ∪ P(A) ∪ P(A ∪ P(A))) ∪ …. We 
denote the family languages generated by NSPPG 
by NSPPL. 
 
Remark 1: Note that in a SPPG and a NSPPG, the 
patterns themselves are in the language of the 
grammar. Also note that there is no difference in 
the components of a SPPG and a NSPPG. The 
difference lies only in the working. 
 
Example 3 We illustrate with some SPPGs and 
NSPPGs with the corresponding languages 
generated.   
i) G1 = ({a}, {a}, {aa}). Here L (G1) =

{ }...,2,1,0/2 =na
n

. In fact initially the 
axiom a replaces both a’s in the pattern aa to 
yield a2 which is then used to replace again 
both a’s in the pattern aa giving a4 and the 
process continues. This grammar in non-
synchronizing mode generates the same 
language. 
 

ii) G2 = ({a, b}, {λ, a, b}, {ab}). L(G2) = Σ*. Any of 
the axioms λ, a, b can initially replace 
independently a as well as b in the pattern ab 
yielding λ, a, b, aa, ab, ba, bb. The resulting 
words can be used in a similar manner in the 
pattern ab and the process can be continued 
to yield the language consisting of all strings 
over a, b including the empty string.  

 
iii) Consider G3 = ({a, b}, {a}, {abb}). In 

synchronizing mode the language generated 

is L(G3 ) = { }...,2,1/3 =na
n

 ∪{abb}. In non-
synchronizing mode in the first step, using a 
we obtain a3 and in the next step we obtain a3, 
a5, a7, a9. Note that if we work in the 
synchronizing mode we can obtain only a9. In 
the subsequent step in the non-synchronizing 
mode we obtain a11, a13, a15, a17, a19, a21, a23, a25, 
a27.  Thus the language generated in non-
synchronizing mode is L(G3) = {abb} ∪ {a2n – 1/ 
n = 1, 2, 3, …}. 

 
Here we consider two more variants in the above 
formalism of defining SPPGs. In the first case, we 

do not include the set of patterns in the language. 
In the second, we allow rewriting of patterns using 
patterns, not only the axioms. The following 
discussion shows what happens in these cases and 
compare them with definition 3.    
 
Case (i):  A Synchronizing pure pattern grammar 
SPPG1 is a triple G = (Σ , A, P) where Σ is an 
alphabet, A ⊆ Σ * is a finite nonempty set of 
elements of Σ *, called axioms and P is finite 
nonempty subset of Σ +, called the set of patterns. 
For a set of words X ⊆ Σ *, let P(X) be the set of 
strings obtained by replacing uniformly and in 
parallel, all the letters in every pattern of P, by 
strings in X. Different occurrences of the same 
letter in a pattern are replaced by the same string. 
Initially the symbols in a pattern are replaced by 
the axioms and subsequently the replacement 
process is continued with the words obtained at 
the current step. The language SPPL, generated by 
G, denoted by L(G), is the smallest language L ⊆
Σ * for which we have A ⊆  L and P(L) ⊆  L.  

In fact L(G) = A ∪ P(A) ∪ P(P(A)) ∪  …  
         

If SPPG1 G is defined as above then the language 
SPPL1 generated in synchronizing mode becomes 
subclass of a pattern language (PL). Reason is that 
as the pattern is not included in the language 
defined by a SPPG1 G, any language generated in 
synchronizing mode can be generated by a pattern 
grammar, but the converse is not true. This is seen 
from the following examples.  
 
Example 4:  
 

(i) Consider a synchronized pure pattern 
Grammar G1 = ({a,b}, {a, b}, {ab}) then  
P(A) =  {a2, b2, ab, ba}; P(P(A)) = {a4, 
a2b2, a3b, a2ba, b2a2, b4, b2ab, b3a, aba2, 
ab3, abab, ab2a, ba3, bab2, ba2b, baba} 
…    
Same language can be generated by a 
Pattern Grammar G = ({a,b}, {a, b}, {

21 δδ }) then  
P(A) =  {a2, b2, ab, ba}; P(P(A)) = {a4, 
a2b2, a3b, a2ba, b2a2, b4, b2ab, b3a, aba2, 
ab3, abab, ab2a, ba3, bab2, ba2b, baba} 
…          
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If the pattern in SPPG1 is {aa} then 
correspondingly in PG a pattern of the 
form {δδ } can be used. So if SPPL1 is 
defined as L(G) = A ∪ P(A) ∪
P(P(A)) ∪  … then SPPL1 ⊆  PL as 
such construction can be done for any 
PPG. 
 

(ii) Consider the pattern language L(G2) = 
{anbn/ n = 1, 2, …} generated by pattern 
grammar G2 = ({a,b}, {λ }, {aδ b}).  By 
definition of a SPPG1 we know the 
L(G2) cannot be generated by any 
SPPG1. 

 
 
 
 
                                               PL                                                           
                                                        SPPL           
 
 
  
 
 
 
 
Case (ii):  If SPPL2 is defined as L(G) = P ∪A ∪
P(A) ∪ P(P(A)) ∪  … .. P(P) ∪ P(P(P)) ∪… then  
in this case the pattern substitutions on pattern are 
included in the language. If the language SPPL2 
generated by SPPG2 G is defined as above then 
SPPL2 becomes incomparable with PL but not 
disjoint. This is seen from the following example.  
 
Example 5:  
  

(i) Consider a PPG G = ({a,b}, {a, b}, {ab}) 
then P(A) =  {a2, b2, ab, ba}; P(P) = 
{abab}; P(P(A)) = {a4, a2b2, a3b, a2ba, 
b2a2, b4, b2ab, b3a, aba2, ab3, abab, ab2a, 
ba3, bab2, ba2b, baba}; P(P(P)) = 
{abababab} …   
  

(ii) But in Pattern Grammar the string 
{ab} is included in the axiom set, let G 
= ({a,b}, {a, b, ab}, { 21 δδ }) then  
P(A) =  {a2, b2, ab, ba, abab, a2b,  bab, 
aba, ab2}; P(P(A)) = {a4, a2b2, a3b, a2ba, 

b2a2, b4, b2ab, b3a, aba2, ab3, abab, ab2a, 
ba3, bab2, ba2b, baba, abababab, 
ababa2, abab3, ababab, abab2a, ababa2b, 
..} …    
       

Here the strings abab, abababab which are in SPPL 
generated by pattern substitutions on P are in PL, 
but strings like a2b, bab, aba are not in SPPL. Thus  
if  SPPL is defined as  L(G) = P ∪A ∪ P(A) ∪
P(P) ∪ P(P(A)) ∪ P(P(P)) … certain strings 
generated by PG cannot be generated by SPPG 
hence SPPL becomes incomparable but not disjoint 
with PL. Any way, it is unusual to substitute 
patterns into patterns, as only axioms should be 
the start point of rewriting process. 
 
4. Conclusion 
 
We have considered here three modes of 
derivation of synchronized pure pattern grammar. 
We have shown three variants in SPPL of which 
one is a subclass of pattern language PL and the 
other is incomparable and disjoint with pattern 
language PL, but the model which we have 
considered is novel in the sense it is not a subclass 
of pattern language and does not involve pattern 
substitutions on pattern set P.                                          
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